

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

C.S.C. Force Measurement, Inc.

84 Ramah Circle North, P.O. Box 887 Agawam, MA 01001

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 05 March 2026 Certificate Number: L1142-1

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002)

C.S.C. Force Measurement, Inc.

84 Ramah Circle North, P. O. Box 887 Agawam, MA 01001 Matthew Bard 413-789-3086

CALIBRATION

Valid to: March 5, 2026 Certificate Number: L1142-1

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Measure	0.1 μV to 100 mV	9.1 μV	Digital Multimeter
	(0.1 to 1) V	0.35 mV	
	(1 to 10) V	0.62 mV	
	(10 to 100) V	5.2 mV	

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Crosshead Displacement (0.000 1 in resolution) (0.001 in resolution)	(0 to 30) in	0.001 6 in	ASTM 2309 using
	(0 to 30) in	0.001 5 in	Gage Blocks

Mass and Mass Related

Version 007 Issued: January 10, 2024

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Verification of Testing Machines	(2 000 to 10 000) lbf (10 000 to 50 000) lbf (50 000 to 100 000) lbf	4.8 lbf 40 lbf 53 lbf	ASTM E4, Method C using Load Cells.

ANAB ANSI National Accreditation Board

Mass and Mass Related

Version 007 Issued: January 10, 2024

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Verification of Testing Machines	(0.02 to 0.1) lbf (0.1 to 0.5) lbf (0.5 to 2) lbf (2 to 10) lbf (10 to 50) lbf (50 to 100) lbf (100 to 200) lbf (200 to 500) lbf (500 to 2 000) lbf	0.000 1 lbf 0.000 22 lbf 0.000 5 lbf 0.002 6 lbf 0.016 lbf 0.021 lbf 0.054 lbf 0.09 lbf 0.26 lbf	ASTM E4, Method A using Class 6 Masses.
Force Measuring Devices	(0.02 to 0.1) lbf (0.1 to 0.5) lbf (0.5 to 2) lbf (2 to 10) lbf (10 to 50) lbf (50 to 100) lbf (100 to 200) lbf (200 to 500) lbf (500 to 2 000) lbf	0.000 1 lbf 0.000 22 lbf 0.000 5 lbf 0.002 6 lbf 0.016 lbf 0.021 lbf 0.054 lbf 0.09 lbf 0.26 lbf	ASTM E74 using Masses.
Force Measuring Devices	(2 000 to 10 000) lbf (10 000 to 50 000) lbf (50 000 to 100 000) lbf	4.8 lbf 40 lbf 53 lbf	ASTM E74 using Load Cells.
Scales (0.001 lb resolution) (0.01 lb resolution) (0.1 lb resolution) (1 lb resolution)	Up to 10 lb Up to 100 lb Up to 1 000 lb Up to 10 000 lb	0.002 4 lb 0.067 lb 0.16 lb 2.2 lb	NIST Class F Weights and NIST Handbook 44 utilized for the calibration of the Weighing System.
Laboratory Balance (0.000 1 g resolution) (0.001 g resolution)	Up to 400 g Up to 400 g	0.43 mg 1.7 mg	ASTM E617 Class 1 Weights and NIST Handbook 44 utilized for the calibration of the Weighing System.
Torque Calibration Systems (Torque Transducers, Torque Analyzers, etc.)	(1 to 50) ozf·in (50 to 100) ozf·in (6 to 50) lbf·in (50 to 250) lbf·in (250 to 1 200) lbf·in (100 to 250) lbf·ft (250 to 600) lbf·ft (600 to 2 000) lbf·ft	0.05 ozf·in 0.2 ozf·in 0.1 lbf·in 0.29 lbf·in 1.3 lbf·in 0.29 lbf·ft 0.62 lbf·ft 1.6 lbf·ft	Direct Comparison using Torque Arms and NIST Class F Weights.

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(1 to 48) ozf·in	0 <mark>.7</mark> 5 ozf∙in	
	(3 to 50) lbf⋅in	0 <mark>.17</mark> lbf∙in	
Torque Indicating Devices	(50 to 250) lbf·in	<mark>7.4</mark> lbf∙in	
(Click Wrenches,	(250 to 1 000) lbf·in	13 lbf·in	Digital Torque Analyzer
Dial Torque Wrenches, etc.)	(80 to 250) lbf·ft	2.8 lbf·ft	
	(250 to 600) lbf⋅ft	4.9 lbf·ft	
	(600 to 2 000) lbf·ft	20 lbf∙ft	

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Crosshead Speed	Up to 80 in/min	0.22 in/min	ASTM 2658 using Length Standards and Digital Stopwatch.

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. L1142-1.

Jason Stine, Vice President

Version 007 Issued: January 10, 2024

