CERTIFICATE OF ACCREDITATION ## The ANSI National Accreditation Board Hereby attests that ## C.S.C. Force Measurement, Inc. 84 Ramah Circle North, P.O. Box 887 Agawam, MA 01001 Fulfills the requirements of **ISO/IEC 17025:2017** and national standard ANSI/NCSL Z540-1-1994 (R2002) In the field of ## **CALIBRATION** This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org. Jason Stine, Vice President Expiry Date: 05 March 2026 Certificate Number: L1142-1 # SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND ANSI/NCSL Z540-1-1994 (R2002) ### C.S.C. Force Measurement, Inc. 84 Ramah Circle North, P. O. Box 887 Agawam, MA 01001 Matthew Bard 413-789-3086 #### **CALIBRATION** Valid to: March 5, 2026 Certificate Number: L1142-1 #### **Electrical – DC/Low Frequency** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |----------------------|------------------|---|--| | DC Voltage – Measure | 0.1 μV to 100 mV | 9.1 μV | Digital Multimeter | | | (0.1 to 1) V | 0.35 mV | | | | (1 to 10) V | 0.62 mV | | | | (10 to 100) V | 5.2 mV | | #### **Length – Dimensional Metrology** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |--|--------------|---|--| | Crosshead Displacement (0.000 1 in resolution) (0.001 in resolution) | (0 to 30) in | 0.001 6 in | ASTM 2309 using | | | (0 to 30) in | 0.001 5 in | Gage Blocks | #### **Mass and Mass Related** Version 007 Issued: January 10, 2024 | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |--|--|---|--| | Force Verification of Testing Machines | (2 000 to 10 000) lbf
(10 000 to 50 000) lbf
(50 000 to 100 000) lbf | 4.8 lbf
40 lbf
53 lbf | ASTM E4, Method C using Load Cells. | ANAB ANSI National Accreditation Board #### **Mass and Mass Related** Version 007 Issued: January 10, 2024 | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |---|--|--|---| | Force Verification of Testing Machines | (0.02 to 0.1) lbf
(0.1 to 0.5) lbf
(0.5 to 2) lbf
(2 to 10) lbf
(10 to 50) lbf
(50 to 100) lbf
(100 to 200) lbf
(200 to 500) lbf
(500 to 2 000) lbf | 0.000 1 lbf 0.000 22 lbf 0.000 5 lbf 0.002 6 lbf 0.016 lbf 0.021 lbf 0.054 lbf 0.09 lbf 0.26 lbf | ASTM E4, Method A using Class 6 Masses. | | Force Measuring Devices | (0.02 to 0.1) lbf
(0.1 to 0.5) lbf
(0.5 to 2) lbf
(2 to 10) lbf
(10 to 50) lbf
(50 to 100) lbf
(100 to 200) lbf
(200 to 500) lbf
(500 to 2 000) lbf | 0.000 1 lbf
0.000 22 lbf
0.000 5 lbf
0.002 6 lbf
0.016 lbf
0.021 lbf
0.054 lbf
0.09 lbf
0.26 lbf | ASTM E74 using Masses. | | Force Measuring Devices | (2 000 to 10 000) lbf
(10 000 to 50 000) lbf
(50 000 to 100 000) lbf | 4.8 lbf
40 lbf
53 lbf | ASTM E74 using
Load Cells. | | Scales (0.001 lb resolution) (0.01 lb resolution) (0.1 lb resolution) (1 lb resolution) | Up to 10 lb Up to 100 lb Up to 1 000 lb Up to 10 000 lb | 0.002 4 lb
0.067 lb
0.16 lb
2.2 lb | NIST Class F Weights and
NIST Handbook 44 utilized
for the calibration of the
Weighing System. | | Laboratory Balance (0.000 1 g resolution) (0.001 g resolution) | Up to 400 g
Up to 400 g | 0.43 mg
1.7 mg | ASTM E617 Class 1 Weights and NIST Handbook 44 utilized for the calibration of the Weighing System. | | Torque Calibration Systems
(Torque Transducers,
Torque Analyzers, etc.) | (1 to 50) ozf·in
(50 to 100) ozf·in
(6 to 50) lbf·in
(50 to 250) lbf·in
(250 to 1 200) lbf·in
(100 to 250) lbf·ft
(250 to 600) lbf·ft
(600 to 2 000) lbf·ft | 0.05 ozf·in 0.2 ozf·in 0.1 lbf·in 0.29 lbf·in 1.3 lbf·in 0.29 lbf·ft 0.62 lbf·ft 1.6 lbf·ft | Direct Comparison using
Torque Arms and NIST
Class F Weights. | #### **Mass and Mass Related** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |-----------------------------|-----------------------|---|--| | | (1 to 48) ozf·in | 0 <mark>.7</mark> 5 ozf∙in | | | | (3 to 50) lbf⋅in | 0 <mark>.17</mark> lbf∙in | | | Torque Indicating Devices | (50 to 250) lbf·in | <mark>7.4</mark> lbf∙in | | | (Click Wrenches, | (250 to 1 000) lbf·in | 13 lbf·in | Digital Torque Analyzer | | Dial Torque Wrenches, etc.) | (80 to 250) lbf·ft | 2.8 lbf·ft | | | | (250 to 600) lbf⋅ft | 4.9 lbf·ft | | | | (600 to 2 000) lbf·ft | 20 lbf∙ft | | #### **Time and Frequency** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method, and/or
Equipment | |---------------------|-----------------|---|---| | Crosshead Speed | Up to 80 in/min | 0.22 in/min | ASTM 2658 using
Length Standards and
Digital Stopwatch. | Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%. #### Notes: - 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope. - 2. This scope is formatted as part of a single document including Certificate of Accreditation No. L1142-1. Jason Stine, Vice President Version 007 Issued: January 10, 2024